您现在的位置:首页 > 2019年3期文摘

金属材料超长寿命疲劳行为及其微结构敏感性

作者:张若凡1,2, 詹 敏2, 李 雪3, 陈 渝2, 何 超2,3, 王清远2,3     时间:2019-09-29 15:09      浏览:745
文章编号:1004-5422(2019)03-0229-09                                               DOI:10.3969/j.issn.1004-5422.2019.03.001


金属材料超长寿命疲劳行为及其微结构敏感性


张若凡1,2, 詹 敏2, 李 雪3, 陈 渝2, 何 超2,3, 王清远2,3
(1.西华大学 建筑与土木工程学院, 四川 成都 610039;
2.成都大学 建筑与土木工程学院, 四川 成都 610106;
3.四川大学 深地科学与工程教育部重点实验室, 四川 成都 610065)

摘 要: 高速列车、航空航天、核电等国家重大工程与装备的高速发展,促使关键部件需具备在超高周次条件(107~109周次)下的高可靠性与安全性.近30年的材料超长寿命疲劳研究发现,疲劳裂纹萌生与小裂纹扩展在疲劳失效过程中有着至关重要的作用,并且其发展演化过程与材料微结构有极大的相关性.从疲劳强度、疲劳裂纹萌生与小裂纹扩展的微结构敏感性3个方面对近年来最新实验与研究成果进行阐述,分析金属材料微结构性质、形态、分布等特征下的超长寿命疲劳行为与失效机理,为新型抗疲劳材料的设计与研发提供基础性依据.
关键词: 超长寿命疲劳;微结构敏感性;疲劳裂纹萌生;小裂纹扩展

中图分类号:TG115.28          文献标志码:A


Ultra-Long Fatigue Behavior and Microstructural Sensitivity of Structural Metallic Materials

ZHANG Ruofan1,2, ZHAN Min2, LI Xue3, CHEN Yu2, HE Chao2,3, WANG Qingyuan2,3
(1.School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China;
2.School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China;
3.MOE Key Laboratory of Deep Earth Science and Engineering, Sichuan University, Chengdu 610065, China)


Abstract:The key components are urged to have high reliability and safety under very high circle condition(107~109 circles),because of the rapid development of national projects and equipments,such as high speed trains,areospace and nuclear power.In the recent 30 years,the fatigue cracks initiation and cracks propagation played an important role in the fatigue failure process,and their evolution process had a great correction with the material microstructure.From the perspective of their fatigue strength,fatigue cracks initiation and microstructural sensitivity of small crack propagation,the latest experimental research results were explained.The long life fatigue behavior and failure mechanism were analyzed based on the characteristics of metal materials microstructure,morpholopy and distribution.The mechanism provided a basis for the design and research of new anti-fatigue materials.
Key words:long-life fatigue;microstructural sensitivity;fatigue crack initiation;small crack propagation